留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

雷竞技app官方版下载ios-雷竞技官方平台

杨华敏 王萍 陶成 王杰 马亮帮

杨华敏, 王萍, 陶成, 王杰, 马亮帮. 雷竞技app官方版下载ios-雷竞技官方平台[J]. 石油实验地质, 2024, 46(1): 166-172. doi: 10.11781/sysydz202401166
引用本文:
杨华敏, 王萍, 陶成, 王杰, 马亮帮. 雷竞技app官方版下载ios-雷竞技官方平台[J]. 石油实验地质, 2024, 46(1): 166-172. doi: 10.11781/sysydz202401166
YANG Huamin, WANG Ping, TAO Cheng, WANG Jie, MA Liangbang. Combined measurement of hydrogen sulfide content and sulfur isotope in natural gas[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2024, 46(1): 166-172. doi: 10.11781/sysydz202401166
Citation:
YANG Huamin, WANG Ping, TAO Cheng, WANG Jie, MA Liangbang. Combined measurement of hydrogen sulfide content and sulfur isotope in natural gas[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2024, 46(1): 166-172. doi: 10.11781/sysydz202401166

雷竞技app官方版下载ios-雷竞技官方平台

doi: 10.11781/sysydz202401166
基金项目: 

国家自然科学基金面上项目 42273015

中国石化油田部先导项目 YTBXD-FCZY-2023-1-07-003

详细信息
作者简介:

杨华敏(1979-), 女, 高级工程师, 从事同位素地球化学分析技术研究。E-mail: yanghm7984@163.com

  • 中图分类号: TE135

  • 文章访问数:  156
  • HTML全文浏览量:  66
  • PDF下载量:  31
  • 被引次数: 0
  • 出版历程
  • 收稿日期:  2023-05-19
  • 修回日期:  2023-12-13
  • 刊出日期:  2024-01-28
  • Combined measurement of hydrogen sulfide content and sulfur isotope in natural gas

  • 雷竞技官方平台: 我国含硫化氢天然气勘探潜力巨大,硫化氢成因、来源、形成机制为石油工作者所关注。硫化氢含量及硫同位素是两项常用且重要的判识指标。因硫化氢的强毒性,国内很多实验室较少检测或取消了此类检测项目。通过前处理流程优选硫化氢转化试剂,同时通过改进同位素质谱仪配套设备——调试硫同位素法拉第杯离子束聚焦等参数,安装特制色谱柱、特氟龙管路、硫反应管等,搭建了硫化氢含量及硫同位素联测技术平台;其次将高纯二氧化硫标准气替换为低浓度、低压力、小体积的工作标准气,通过系统条件实验探索(稳定性,标样分析等),确定最优实验条件;最后将反应生成的固体沉淀物送入质谱仪中进行硫同位素组成信息的检测,通过与标准纯含硫物质同位素组成的信号对比,计算出待测气体中硫化氢含量。用该方法对鄂尔多斯盆地大牛地气田、富县气田、鄂西渝东红星地区部分含硫化氢天然气进行硫化氢含量和硫同位素测试,所测结果稳定、精度良好,同时与外部实验室比对结果吻合。与传统方法比,该方法一次进样可得到硫含量和硫同位素数值;优选醋酸银试剂一步化学法一次性转化,减少同位素分馏;另一方面将硫化氢转化为固态硫化银,与标准物质硫化银硫同位素直接对比,同位素溯源结果更具可靠性;以低浓度、低压力、小体积的二氧化硫作为工作标准气,降低了实验室安全风险和仪器损害,满足环保安全需求。

     

    关键词:
  • 硫化氢 / 
  • 硫同位素 / 
  • 联测方法 / 
  • 天然气 
  • HTML全文
  • 图  1  含硫化氢天然气样品单次分析硫化氢含量和硫同位素图谱

    Figure  1.  Chromatogram of hydrogen sulfide content and sulfur isotope by single analysis of samples of natural gas containing hydrogen sulfide

    表  1  实验室内配制硫化氢标准气含量测定结果

    Table  1.   Measurement results of hydrogen sulfide standard gas prepared in laboratory

    样品名称
    测定次数
    总反应体积/ L
    总沉淀量/ mg
    H2S体积浓度/ 10-6
    测定平均值/ 10-6
    推荐值/ 10-6
    标气
    1
    74.95
    4.51
    5.44
    5.38
    5.58
    标气
    2
    68.45
    4.02
    5.31
    5.38
    5.58
    下载: 导出CSV

    表  2  标准物质的硫同位素测定结果

    Table  2.   Measurement results of sulfur isotope of standard substance

    样品名称
    测定次数
    δ34SVCDT测定值/‰
    推荐值/‰
    平均值/‰
    标准偏差/‰
    GBW04414
    1
    -0.03
    -0.07
    -0.02
    0.11
    2
    -0.18
    3
    0.11
    4
    -0.01
    5
    0.02
    GBW04415
    1
    22.06
    22.15
    22.10
    0.14
    2
    21.93
    3
    22.32
    4
    22.07
    5
    22.11
    IAEA (C6H8O2N2S)
    1
    5.91
    5.91
    0.04
    2
    5.96
    3
    5.92
    4
    5.91
    5
    5.84
    下载: 导出CSV

    表  3  含硫化氢天然气样品中硫化氢含量和硫同位素测试结果

    Table  3.   Measurement results of hydrogen sulfide content and sulfur isotope in samples of natural gas containing hydrogen sulfide

    样品井号
    层位
    测定次数
    总反应体积/mL
    总沉淀量/ mg
    H2S质量含量/ (mg/m3)
    H2S体积浓度
    δ34SVCDT
    测定值/ 10-6
    平均值/ 10-6
    相对偏差/ %
    测定值/ ‰
    平均值/ ‰
    相对偏差/ %
    PG19
    M5-5
    1
    110
    4.60
    5 738
    3 780
    3 789
    0.45
    29.87
    29.80
    0.29
    2
    258
    10.87
    5 781
    3 809
    29.82
    3
    250
    10.45
    5 735
    3 778
    29.7
    XF11
    M5-1
    1
    384
    5.96
    2 130
    1 403
    1 373
    7.65
    20.5
    20.45
    0.30
    2
    490
    7.91
    2 215
    1 459
    20.38
    3
    169
    2.35
    1 907
    1 256
    20.46
    D1-544
    M5-7
    1
    141
    3.12
    3 036
    2 000
    2 025
    1.75
    26.75
    26.74
    0.05
    2
    265
    6.01
    3 112
    2 050
    26.73
    3
    71
    1.34
    2 590
    1 706
    -
    -
    27.18
    -
    -
    HY1
    吴二段
    1
    193
    3.04
    2 161
    1 424
    1 465
    3.91
    12.08
    12.01
    0.88
    2
    397
    6.61
    2 284
    1 505
    11.93
    3
    105
    0.95
    1 241
    818
    -
    -
    12.28
    -
    -
    注:表中“-”表示该次实验所得沉淀量少,结果误差较大,不做统计分析。
    下载: 导出CSV

    表  4  天然气样品中硫化氢含量和硫同位素测试结果比对

    Table  4.   Comparison testing results of hydrogen sulfide content and sulfur isotope in natural gas samples

    样品井号
    H2S体积浓度
    δ34SVCDT
    本方法/10-6
    海洋三所/10-6
    相对偏差/%
    本方法/‰
    海洋三所/‰
    相对偏差/%
    PG19
    3 789
    3 645
    3.87
    29.80
    29.51
    0.97
    D1-544
    2 025
    2 134
    5.24
    26.74
    26.30
    1.66
    下载: 导出CSV
  • 参考文献(28)
  • [1]
    戴金星. 中国含硫化氢的天然气分布特征、分类及其成因探讨[J]. 沉积学报, 1985, 3(4): 109-120.

    DAI Jinxing. Distribution, classification and origin of natural gas with hydrogen sulphide in China[J]. Acta Sedimentologica Sinica, 1985, 3(4): 109-120.
    [2]
    王一刚, 窦立荣, 文应初, 等. 四川盆地东北部三叠系飞仙关组高含硫气藏H2S成因研究[J]. 地球化学, 2002, 31(6): 517-524. doi: 10.3321/j.issn:0379-1726.2002.06.002

    WANG Yigang, DOU Lirong, WEN Yingchu, et al. Origin of H2S in Triassic Feixianguan Formation gas pools, northeastern Sichuan Basin, China[J]. Geochimica, 2002, 31(6): 517-524. doi: 10.3321/j.issn:0379-1726.2002.06.002
    [3]
    朱光有, 戴金星, 张水昌, 等. 含硫化氢天然气的形成机制及分布规律研究[J]. 天然气地球科学, 2004, 15(2): 166-170. doi: 10.3969/j.issn.1672-1926.2004.02.014

    ZHU Guangyou, DAI Jinxing, ZHANG Shuichang, et al. Generation mechanism and distribution characteristics of hydrogen sulfide bearing gas in China[J]. Natural Gas Geoscience, 2004, 15(2): 166-170. doi: 10.3969/j.issn.1672-1926.2004.02.014
    [4]
    何生厚. 高含硫化氢和二氧化碳天然气田开发工程技术[M]. 北京: 中国石化出版社, 2008.

    HE Shenghou. The development engineering technology in the high-containing hydrogen sulfide and carbon dioxide gas field[M]. Beijing: China Petrochemical Press, 2008.
    [5]
    朱光有, 张水昌, 梁英波, 等. 川东北地区飞仙关组高含H2S天然气TSR成因的同位素证据[J]. 中国科学(D辑: 地球科学), 2005, 35(11): 1037-1046.

    ZHU Guangyou, ZHANG Shuichang, LIANG Yingbo, et al. Isotopic evidence of TSR origin for natural gas bearing high H2S contents within the Feixianguan Formation of the northeastern Sichuan Basin, Southwestern China[J]. Science in China (Series D: Earth Sciences), 2005, 48(11): 1960-1971.
    [6]
    罗曦. 大牛地下古生界气藏天然气原生含硫成因研究[J]. 石油与天然气化工, 2020, 49(3): 83-86. doi: 10.3969/j.issn.1007-3426.2020.03.014

    LUO Xi. Study on the origin of primary sulfur in natural gas of Daniudi gas reservoir[J]. Chemical Engineering of Oil & Gas, 2020, 49(3): 83-86. doi: 10.3969/j.issn.1007-3426.2020.03.014
    [7]
    孙晓, 王杰, 陶成, 等. 鄂尔多斯盆地大牛地下古生界天然气地球化学特征及其来源综合判识[J]. 石油实验地质, 2021, 43(2): 307-314. doi: 10.11781/sysydz202102307

    SUN Xiao, WANG Jie, TAO Cheng, et al. Evaluation of geochemical characteristics and source of natural gas in Lower Paleozoic, Daniudi area, Ordos Basin[J]. Petroleum Geology & Experiment, 2021, 43(2): 307-314. doi: 10.11781/sysydz202102307
    [8]
    王杰, 贾会冲, 孙晓, 等. 鄂尔多斯盆地富县古生界天然气成因及气源综合识别[J]. 天然气地球科学, 2022, 33(9): 1476-1484.

    WANG Jie, JIA Huichong, SUN Xiao, et al. Comprehensive evaluation on origin and source of natural gas in the Paleozoic in Fuxian area, Ordos Basin[J]. Natural Gas Geoscience, 2022, 33(9): 1476-1484.
    [9]
    丁思家, 刘鸿, 杨雅冰, 等. 紫外吸收法测定天然气中硫化氢含量的研究[J]. 西南石油大学学报(自然科学版), 2022, 44(1): 181-188.

    DING Sijia, LIU Hong, YANG Yabing, et al. A study on the determination of hydrogen sulfide in natural gas by ultraviolet absorption method[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2022, 44(1): 181-188.
    [10]
    牛子铖, 王永诗, 王学军, 等. 东营凹陷南坡东段不同含硫量原油特征及高硫原油成因分析[J]. 油气地质与采收率, 2022, 29(5): 15-27.

    NIU Zicheng, WANG Yongshi, WANG Xuejun, et al. Characteristics of crude oil with different sulfur content and genesis analysis of high-sulfur crude oil in eastern section of southern slope of Dongying Sag[J]. Petroleum Geology and Recovery Efficiency, 2022, 29(5): 15-27.
    [11]
    吴亚军, 王宁, 张广东, 等. 高含硫气藏单质硫溶解度测试方法及预测模型[J]. 特种油气藏, 2022, 29(2): 104-109.

    WU Yajun, WANG Ning, ZHANG Guangdong, et al. Testing method and prediction model of elemental sulfur solubility in sour gas reservoirs[J]. Special Oil & Gas Reservoirs, 2022, 29(2): 104-109.
    [12]
    彭鑫岭, 蒋光迹, 彭松, 等. 普光高含H2S气田硫沉积规律及其对开发的影响[J]. 断块油气田, 2022, 29(4): 455-462.

    PENG Xinling, JIANG Guangji, PENG Song, et al. The law of sulfur deposition and its effect on production in Puguang high H2S gas reservoir[J]. Fault-Block Oil and Gas Field, 2022, 29(4): 455-462.
    [13]
    石国新, 王凤清, 曹强, 等. 玛湖致密油开发硫化氢产生原因[J]. 西南石油大学学报(自然科学版), 2022, 44(4): 145-152.

    SHI Guoxin, WANG Fengqing, CAO Qiang, et al. Mechanism of hydrogen sulfide generation during tight oil development at Mahu[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2022, 44(4): 145-152.
    [14]
    李童, 马永生, 曾大乾, 等. 高含硫气藏地层硫沉积研究进展及展望[J]. 断块油气田, 2022, 29(4): 433-440.

    LI Tong, MA Yongsheng, ZENG Daqian, et al. Research progress and prospect of formation sulfur deposition in high sulfur gas reservoirs[J]. Fault-Block Oil and Gas Field, 2022, 29(4): 433-440.
    [15]
    林敏. 天然气中硫化氢测定方法的比对[J]. 化学分析计量, 2018, 27(3): 92-95.

    LIN Min. Comparison of determination methods of hydrogen sulfide in natural gas[J]. Chemical Analysis and Meterage, 2018, 27(3): 92-95.
    [16]
    中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 天然气 含硫化合物的测定 第1部分: 用碘量法测定硫化氢含量: GB/T 11060.1-2010[S]. 北京: 中国标准出版社, 2010.

    General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of the People's Republic of China. Natural gas—determination of sulfur compound—part 1: determination of hydrogen sulfide content by iodometric titration method: GB/T 11060.1-2010[S]. Beijing: Standards Press of China, 2010.
    [17]
    国家市场监督管理总局, 国家标准化管理委员会. 天然气 含硫化合物的测定 第10部分: 用气相色谱法测定硫化合物: GB/T 11060.10-2021[S]. 北京: 中国标准出版社, 2021.

    State Administration for Market Regulation, Standardization Administration. Natural gasdetermination of sulfur compounds—part 10: determination of sulfur compounds using gas chromatography method: GB/T 11060.10-2021[S]. Beijing: Standards Press of China, 2021.
    [18]
    卞成萍, 于兴龙. 气相色谱法测定天然气中微量硫化氢羰基硫甲硫醇甲硫醚和二甲基二硫含量[J]. 科技创新导报, 2009, 6(22): 7.

    BIAN Chengping, YU Xinglong. Determination content of trace hydrogen sulfide, acetacyl sulfur, methanethiol, dimethyl sulfide and dimethyl disultide in natural gas by gas chromatography[J]. Science and Technology Innovation Herald, 2009, 6(22): 7.
    [19]
    YUN M, WADLEIGH M A, PYE A. Direct measurement of sulphur isotopic composition in lichens by continuous flow-isotope ratio mass spectrometry[J]. Chemical Geology, 2004, 204(3/4): 369-376.
    [20]
    储雪蕾, 赵瑞, 臧文秀, 等. 煤和沉积岩中各种形式硫的提取和同位素样品制备[J]. 科学通报, 1993, 38(20): 1887-1890.

    CHU Xuelei, ZHAO Rui, ZANG Wenxiu, et al. Extraction of various forms of sulfur in coal and sedimentary rocks and preparation of isotopic samples[J]. Chinese Science Bulletin, 1993, 38(20): 1887-1890.
    [21]
    赵瑞, 沈延安, 储雪蕾, 等. 碳酸盐岩中微量硫酸盐的氧硫同位素分析[J]. 地质科学, 1996, 31(3): 308-312.

    ZHAO Rui, SHEN Yan'an, CHU Xuelei, et al. Oxygen-sulfur isotopic analysis of trace sulphate in carbonate rocks[J]. Scientia Geologica Sinica, 1996, 31(3): 308-312.
    [22]
    GIESEMANN A, JAEGER H J, NORMAN A L, et al. Online sulfur-isotope determination using an elemental analyzer coupled to a mass spectrometer[J]. Analytical Chemistry, 1994, 66(18): 2816-2819.
    [23]
    CAI Chunfang, WORDEN R H, BOTTRELL S H, et al. Thermochemical sulphate reduction and the generation of hydrogen sulphide and thiols (mercaptans) in Triassic carbonate reservoirs from the Sichuan Basin, China[J]. Chemical Geology, 2003, 202(1/2): 39-57.
    [24]
    金贵善, 刘汉彬, 张建锋, 等. 硫化物中硫同位素组成的EA-IRMS分析方法[J]. 铀矿地质, 2014, 30(3): 187-192.

    JIN Guishan, LIU Hanbin, ZHANG Jianfeng, et al. EA-IRMS system measurement of stable sulfur isotope in sulphide[J]. Uranium Geology, 2014, 30(3): 187-192.
    [25]
    李志生, 李谨, 王东良, 等. 四川盆地含硫化氢气田天然气地球化学特征[J]. 石油学报, 2013, 34(S1): 84-91.

    LI Zhisheng, LI Jin, WANG Dongliang, et al. Geochemical characteristics of natural gas in H2S-bearing gas fields in Sichuan Basin[J]. Acta Petrolei Sinica, 2013, 34(S1): 84-91.
    [26]
    ONO S, WING B, RUMBLE D, et al. High precision analysis of all four stable isotopes of sulfur (32S, 33S, 34S and 36S) at nanomole levels using a laser fluorination isotope-ratio-monitoring gas chromatography-mass spectrometry[J]. Chemical Geology, 2006, 225(1/2): 30-39.
    [27]
    张文龙, 黄凌, 李化冬, 等. 天然气中硫化氢硫同位素分析前处理方法探讨[J]. 现代科学仪器, 2018(3): 62-64.

    ZHANG Wenlong, HUANG Ling, LI Huadong, et al. Discussion on pretreatment method of sulfur isotope analysis of hydrogen sulfide in natural gas[J]. Modern Scientific Instruments, 2018(3): 62-64.
    [28]
    李立武, 李中平, 杜丽, 等. H2S中硫同位素的GC-IRMS直接测定法[C]//第31届中国质谱学年会. 西安: 2011: 73-74.

    LI Liwu, LI Zhongping, DU Li, et al. Direct determination by GC-IRMS of sulfur isotope of hydrogen sulfide[C]//The 31st Chinese Mass Spectrometry Academic Conference. 2011: 73-74.
  • 相关文章
  • 施引文献
  • 资源附件(0)
  • 加载中
  • WeChat 点击查看大图
    图(1) / 表(4)
    计量
  • 文章访问数:  156
  • HTML全文浏览量:  66
  • PDF下载量:  31
  • 被引次数: 0
  • 出版历程
  • 收稿日期:  2023-05-19
  • 修回日期:  2023-12-13
  • 刊出日期:  2024-01-28
  • 目录

    /

    返回文章
  • 分享
  • 用微信扫码二维码

    分享至好友和朋友圈

    返回